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A WKB-perturbation technique is applied to study the slow modulation of a 
Stokes wave train on the surface of water. It is found that new terms directly 
representing modulation rates must be included to extend the scope of validity 
of Whitham’s theory based on an averaged Lagrangian. Two examples are dis- 
cussed. In  the first, a monochromatic wave normally incident on a mild beach 
is studied and the local rate of depth variation is found to affect the wave phase. 
In  the second, the ‘side-band instability ’ problem of Benjamin & Feir is discussed 
from both linear and non-linear points of view. 

1. Introduction 
The slow evolution of non-linear dispersive waves has received much attention 

since the work of Longuet-Higgins & Stewart (1962) and Whitham (1962) on 
water waves. For nearly periodic wave trains Whitham (1965a, b )  generalized 
the method of averaging and deduced the basic equations governing the slow 
niodulation of the amplitude, the wave-number, etc., with respect to both space 
and time. He further introduced the alternative of assuming an averaged Lagran- 
gian and showed that these equations followed from a variational principle 
(1967a, b) .  While Whitham’s general approach has since found wide applications, 
its justification by formal perturbation schemes has also been given by Luke 
(1966) for a non-linear Klein-Gordon equation and by Hoogstraten (1 968, 
1969) for both deep and shallow water waves. In  Hoogstraten’s work two order- 
ing parameters characterizing the wave steepness and the modulation rate were 
distinguished. In  the present paper, we shall show that by allowing these two 
to bethe same 6, the scope of Whitham theory is extended. Of special significance 
is the fact that terms of higher derivatives and dispersive types are added to 
Whitham’s modulation equations. 

These new terms are second-order corrections due to slow modulation rates 
and not due to non-linearity, and some of them may be foreseen from heuristic- 
ally examining the linear terms alone. To illustrate we consider the following 
potential 

ga (D(X,T) = s-ekzcos(kX-wT), w 

where a, k, w are slowly varying functions of X and T with the characteristic 
scales O( I/€) longer than the primary wavelength and period. Now, from the free- 
surface boundary condition (cf. (2.5)), it is obvious that the term $TT will bring 
out a term like (a /w)Tr  of the order O(s2), i.e. same as the leadingnon-linear terms 
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0(&a)2, to the dispersion relation (cf. (7.1)).  It is this type of term which modifies 
Whitham’s theory in a significant way. 

Two special cases are treated as illustrations. In  the first, we study a quasi- 
steady wave train incident normally on a beach. Earlier results of induced mass 
flux, mean sea level change, etc., are obtained in a purely formal manner. 
Besides, there is now a direct influence of bottom slope upon the wavephase. 
The phase change depends on the vertical co-ordinate, hence the normal to the 
surface of constant phase is no longer horizontal. 

One of the interesting applications of Whitham’s theory is on the side-band 
instability of two-dimensional Stokes wave originated by Benjamin & Feir 
(1967) and Benjamin (1967). This problem has been generalized by Benney & 
Newell (1967) and Benney & Roskes (1970). With quite different mathematical 
techniques the results by these authors agree with each other on most but not all 
essential points. In  particular, Whitham’s theory is restricted to near-zero side- 
band width, while others are not. In the present paper it will be shown that with 
the additional dispersive terms this restriction is finally removed and the fuller 
Whitham equations are capable of yielding all the results by other methods. 
Lastly, the resemblance between Boussinesq equations of shallow water waves 
and the slow modulation equations of deep water waves is pointed out, and its 
non-linear implications are further discussed in the light of recent numerical 
studies of the former by Madsen & Mei (1969a, b) .  

2. Formulation and perturbation expansions 
We use X ,  Y ,  2 and T to denote natural space and time variables: 

X = ( X ,  Y )  = the horizontal co-ordinates, 

2 = vertical co-ordinate, positive upward. We also distinguish the three-dimen- 
sional gradient operator 

from the horizontal gradient operator 

The basic governing equations for water waves are 

v;@ = v;@+@.,, = 0, - h ( X )  6 2 < q ( X , T ) ,  

JuI2 = 0, 2 = q(X,T) ,  

@,,+V2<D.V272 = 0, 2 = - h ( X ) ,  

where u = Vs@. The free surface elevation is related to  the potential by 

(2.1) 

(2.2) 

(2.31 

(2.4) 
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For small amplitude waves we may expand the free surface conditions (2.2) 
and (2.4) about 2 = 0, yielding, 

In  addition to the primary scales of wavelength and period we anticipate 
much longer scales of slow modulation. Let E be the small ordering parameter 
characterizing both the wave steepness and the rate of modulation. In particular 
the depth is assumed to change slowly so that h. =  EX). We introduce the 
following slow variables x, y, and t by 

x = (z,~J) = EX = E ( X ,  Y ) ,  t = ET, z = 2. (2.7) 

Now the following expansions of WKB type are assumed:? 

CD(X,Z,T) = C en z qWm)(x ,z , t )e im@c.k ,  

q ( X , T )  = 3 en I: q ( n * m ) ( x , t ) e i m W .  

(2.8a, b )  1 
W +n 

n=l m = - n  

W +n 

n=l m=-n 

For real CD and q we require $(n*m) and q(n*m) to be the complex conjugates of 
$(n,-m) and q(n*--m). The phase function $(x , t )  then defines the wave-number 
k and frequency w in the usual way: 

(2.9a, b )  I k(x, t )  = ( l /e)  V2$ = 04, 
w(x, t )  = - (1/€) $hT = - $t, 

where V = (a/az, ajay, 0) .  Equations (2.9) also imply that 

V x k = O  and k,+Vw=O. (2.1 Oa, b )  

In  addition $, k, w are also expanded 
m m rn 

$ = C ~ ~ i $ ~ ~ ,  k = 2 e2jkzj, w = 2 e2jwWzj. (2 . l la ,b ,c )  
j=O j = O  j=O 

Upon substituting (2.8) and (2.11) into (2.1), (2.3), (2.5) and (2.6) and separating 
different orders and harmonics, we obtain a set of boundary-value problems 
involving ordinary differential equations. For each pair of indices (n, m) we have 

(2.12a, b, c,  d )  1 
#gpm) - m2k; $ ( n p  m) = R(n, m) ( X ,  z, t )  ( - h < x < O ) ,  

g4Fm) - m2@; $(n*m) = G(n,m) (x, t )  (2 = o), 
g p n '  = g ( n . m ) ( x ,  t )  (z  = - h),  

q("*m) = - [imw,$".m) (x ,  0, t )  -H(-)(x, t ) ]  (2 = O ) ,  
1 

g 
and 

t Early ideas of the present method may be found in Benney & Rosenblat (1964), 
Bretherton (1968) and Mei, Tlapa & Eagleson (1968). 
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where R(n,m), G(n,m), F(nim) and H("?m) depend on terms of orders lower than n. 
Their explicit form will be given when needed. Thus a kind of separation of 
variables is formally achieved; the task remains to solve the system in succession. 

3. General procedure of solution 
Because of the increasing complexities at higher orders, it is helpful to study 

some general features before going into details. We shall first present the formal 
solution to (2.12). In  particular the zeroth harmonic is simplest. By taking 
m = 0, we obtain a first-order equation for $inlo' with two boundary conditions. 
The solution satisfying ( 2 . 1 2 ~ )  and (2 .12~)  may be given as 

but this gives no further information on #Cnso). The extra condition (2.12b) on the 
free-surface gives a solvability condition relating Rcn,o), F(n,O) and G(n.0)) 

Now it can be shown that 

Ie=-rr (3.3) R(n,O) = - '172$(n--2,0) and p(n.0) = - V h .  [V$(n-%o) 

It follows by using the Leibniz rules that (3.2) is equivalent to 

1 
(3.4) 

(3.5) 

v,$(n--2,0) dz = - - GCn, 0) q", g 
and (3.1 ) gives 

v$(n-%O) dz. 11, $PO) = -v. 

Equation (3.4), which is the consequence of the nth order, gives a relation for 
V$(n-2,0); in other words, restriction on VC$("-~,O) is found at  two orders later. 
We may note, physically, that en,$p,o) contributes at  the nth order to the vertical 
mean current while enVzq5(n,o) = en+lV,$(n.o) contributes at the (n + 1)th order to 
the horizontal mean current. 

For other harmonics m+ 0, the solution that satisfies ( 2 . 1 2 ~ ~ )  and (2 .12~)  is 
formally, 

1 
mk, 

p , m )  = A(n,m) Gosh mQ + __ F(n.4 sinh mQ 

cosh mQ'dQ' - cosh mQ R("ym) sinh mQ'dQ' 
10Q 

(3.6) 
where Q = ko(z+h), Ic0 = Ikol. Substituting (3.6) into the free surface condition 
(2.12 b )  we have 

(k,sinhmy- mlc, coshrnq) rnAcnsm)- - R(n,m)sinhmQdQ 
k: s" 0 

+ (kocoshmq-mk,sinhmq) R(n~m)coshm&dQ 
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where k, = wilq,  p = koh. In  general, for all n, m = 2, 3, 4 ..., n, (3.7) fixes the 
coefficient A(n,m) uniquely. When m = 1 the coefficient A(n?m) drops out explicitly 
from (3.79, which takes on special significance, as discussed below. 

For n = 1, m = 1, it is easy to show that R(l>l) = F(l,l) = G(l*Q = H(l>I) = 0, the 
system (2.12a, b, c) is homogeneous, leading to the solution 

#(1~1) = - ( i /wo)  gA(1.1) cash &, ~ ( b 1 )  = A(1.1) cash 4 = +a, (3.8) 

kotanhq = k,. (3.9) 

whereas, from (3.7), the classical dispersion relation is obtained. 

For m = 1, n = 2 , 3 ,  ..., (3.7) corresponds to the solvability condition for the 
inhomogeneous boundary-value problem defined by (2.12) ; its specific form is 

(3.10) 

Now F(n9l) and Bn>l) depend on the terms A("-lJ), w,-~ and kn-l which are yet 
to be determined. For example, at  the stage n = 2, (3.10) provides a condition 
for A(1.1); at n = 3 it provides a relation between k, and w2, etc., . . . . 

4. Equations governing the slow modulation 
The formal solutions to (2.12a, b ,  c )  are straightforward and the results and 

some important information regarding them are summarized in appendix A. 
Substituting (A 4a, b, c) into the solvability condition (3. lo), 

1 

9 
= - ~ 0 ~ h ~ { i [ ~ g ~ ( ~ ~ ~ ) ] t + i ~ g # ~ ' ~ ~ ) } ~ _ 0 .  (4.1) 

Multiplying both sides by A(lpl) and making use of the Leibniz rule we obtain 

which can be integrated to give the equation of energy conservation, 

where 

It can be shown that 

(4 .3a)  

(4 .3b ,  c )  

(4.4) 

Substituting this into the solvability condition (3.4), we obtain a conservation 
equation for the second-order mean quantities q(2,0) and Vq5(l>O) as follows: 

(4.5) 



878 V .  H .  Chu and C. C. Mei 

Another equation relating the mean quantities may be obtained by differentiat- 
ing equation (A lo), appendix A, with respect to x, 

where 
k2 a2 

16 
& = L ( 9 ~ ~ - l O c ~ ~ + 9 9 ) ,  c~ = cothk,h, 

(4.7a, b,  c )  1 

& = (#cz.1)12W02~(1,1))2,0. J 

Substituting (4.7) into the solvability condition (3. lo), andintegrating, we obtain 
a relation between k2 and w2: 

W 2  = WO[ES+ CD + 57J + ET + 5x1 + k2. c, (4.9) 

+- [-iV2~(1,1)+V.(kO~(2,1))+k0.V#(2,1)]e~~h&d& . (4.10) 
ko sq 0 I 

Combining this with (2.lOb) gives the following conservation equation for wave- 
number accurate to the second order O(e2):  

(4.11) 
2k 
- + V{o,[l + e2[] + s2k2. C,) = O(e4), 

where 5 =  t S + C D + & l + C X + % T .  (4.12) 

Physically the terms ts, to, &, Ex, CT represent respectively the effects of 
Stokes amplitude dispersion, mean depth change, mean current, spatial modula- 
tion and temporal modulation. 

Now, equations (4.3), (4.5) and (4.6) are completely equivalent to three of 
Whitham's equations ( 1 9 6 7 ~ )  equations (39)) (40)) (42)) derived by averaging 
techniques. Note that all three are of order O(s2) on the whole, hence they can be 
written by changing all k, to k with an error of O(e4) only. To compare (4.11) with 
the remaining equation of Whitham (1967a, equation (41)), we use the fact that 

w = o , + e 2 ~ , +  ... and k = k,+e2k2+ ..., 
hence ko = k[1- e2k. k2/k2 + O(s4)]. (4.13) 

It follows that wo(k,) = w,(k) - e2k,. C, + O(e4), (4.14) 

where o i ( k )  = gk tanh kh. (4.15) 

at 
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Thus, (4.16) 

Referring to (4.12), we point out that (4.16) differs from Whitham's correspond- 
ing equation by two terms & and &, all others being identical. As can be seen 
from their definitions, gx and &, both involve terms twice differentiated with 
respect to space and time respectively. Thus only when the modulation rate is 
very much less than the wave steepness (i.e. modulation is characterized by scales 
muchlonger than O( l/s)) can tx and .i& be ignored, in which case (4.16) reduces to 
Whitham's exactly. 

and #A2,1) only 
depend on the amplitude a in a linear way; therefore, they must arise from linear 
terms in the governing equations. To demonstrate their effects we briefly treat 
two examples in 5 5 and Q 6. 

Now it can also be seen that these new terms, arising from 

5. Monochromatic waves over variable bottom 
This example singles out the effect of spatial modulation rate for the frequency 

is kept as a pure constant and all a, k, etc., now real, are independent of t. The 
following classical results are immediate from (4.3), (4.5) and (4.6): 

v .  c,- = o .  ( 3 

Equation (5.1) represents well-known energy conservation in refracting waves 
which can be further integrated explicitly in two dimensions: 

? = [ A (  sinh2q )] 4 , 
a, k, 1+sinh2q (5.4) 

where am is the first-order amplitude in infinitely deep water. Equation (5.2) 
states the constancy of mass flux due to waves, first obtained by Whitham 
(1962). In  the case of a closed beach, the constant vanishes, and Vq!A1.O) corre- 
sponds to the return current. Equation (5.3) gives the mean sea level change first 
predicted by Longuet-Higgins & Stewart (1962) as a consequence of radiation 
stresses. In  the rest of Q 5 we restrict ourselves to the two-dimensional case, hence 
k = (k, 0) and h = h(x), etc. With o2 = 0 and !& = 0, it follows from (4.9) that 

( 5 . 5 )  

The expression for Ex is lengthy and is given in appendix B. Numerical results 
have been obtained for a plane closed beach with h = - x and normal incidence.? 
The notable feature is that tD, tU and gX are positive and tend to shorten the 

t The region shoreward of the breaking zone is excluded. 
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waves, while gs is negative and tends to  lengthen the waves. With particular 
combination of parameters the whole correction k, may be zero; i t  has in fact 
been observed in experiments that sometimes the linearized dispersion relation 
gives better prediction than an incomplete non-linear one using only the Stokes 
term (Eagleson 1956). Numerical results are shown in figure 1. 

14 r 

-2 t 
FIGURE 1. Variation of total second-order modification of wave-number with respect to  
still water depth. Normal incidence on a plane beach. Solid curve represents the case where 
gX is negligible. 

Another feature of interest is that qP1) is out of phase with #(l%l)) etc., and 

(5.6) 

(5.7) 

r(2,1) = 0 (cf. (As)). Now by rewriting 

[s$(L 1) + $@4 1’1 &@/a = q@ 1) e i ( @ + ~ 2 @ / ~  + O(e3), 

where 

correct to the order O(s2) ,  we have 

S(x, x )  = - [a1(& - q)  + a2(& tanh & - q tanh q )  + a3(&2 - q2)] 

@ = s~(1,0)+2i[s~(1.1)sin (1/€) (@+s2S)+e2q5(2,2)sin (2/e) (@+s28)]  +O(e3) .  (5.8) 

Due to  the x dependence of S a surface of constant phase is no longer vertical, but 
is given by 

(5.9) 6 A l Z k .  cix + s ~ ( x ,  x )  - to = constant 
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for fixed t = to. It can be shown that this surface is perpendicular to both z = 0 
and the bottom and is approximately given by the following, 

(5.10) 

Typical geometry of the equal phase curves is shown in figure 2, indicating con- 
cavity toward the shore (Battjes 1968). 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

- 0.2 

\ z/h=-l ,  

(4 
FIGURE 2. The phase change on a plane beach, normal incidence (a)  6/hxvs. k,h; 
z / h =  0, -4, -4, -$, - 1 . ( b )  k,S/k,hxvs.k,z;b,h=2.(~) k,S/kohxvs.k,z;kc,h= 1. 

We mention finally that for a completely submerged bottom of slowly varying 
depth, no perturbation theory for weak reflexion is yet known comparable to 
that of Bremmer (1949) for linear long waves (see also Kajiura 1962). 

6. Linearized instability theory of Stokes waves 
In  the pioneering studies of Benjamin & Feir (1967), Benjamin (1967) and 

Whitham (1967)) side-band disturbances were treated two-dimensionally. 
Benney & Roskes (1970), using the method of multiple scales, made several 
generalizations among which the modulation wave was taken to be oblique 
with respect to the Stokes wave train. New side-band cut-off limits were found. 
The same problem can be equally well treated on the basis of (4.3), (4.5), (4.6), 
(4.16) in the manner of Whitham (1967~) .  We take h = constant and introduce 
the notations U = V#l>O) and d = ~(~30). Allowing small disturbances to a, k, U and 

(6.1) 
d s o  that a = a+a’, k = E+k’, U = u+U’ ,  d = z+d’ 

with k’ = (p’, v’) and U’ = (U’, V’). 
F L M  41 56 
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Consider the Stokes wave to be propagating in the x direction only, i.e. 

V .  H .  Chu and C .  C .  Mei 

E = ( E ,  0) D = ( U ,  0). (6.2) 

Linearizing (4.3), (44, (4.6) and (4.16) with respect to the primed quantities, 
and dropping the symbol ( -  ), for the constant state (Stokes), 

Cgpf  + c2 wok2aSoa' + $kU' + s2wok Do# 
at 

where D 0 - : (  - -  cr-- :) and So=&(9cr4-10cr2+9).  (6.4) 

Assuming solutions of the type A exp [ i( K.X - Qt)], K = (K,, K,) an eigen- 
value condition is obtained, yielding six eigenfrequencies. Four of them are real 
and hence stable to the order O(E): s2 = f O(e2) and s2 = & ,/(gh(K! + Kt)}  + O(c) ,  
while the remaining two may be complex: 

Q 
K,  - = c, + €4 

where 

The growth rate is simply 

(i + Cg L) In A = - ieK,C,. 

(6.6~2, F, c) i 
Detailed discussions on the region of instability in the K ,  N K ,  plane have been 
given by Benney & Roskes (1970) and will be omitted here. We point out that for 
B = 0 ( K ,  = 0) ,  (6.5)-(6.7) are reducible to Benjamin (1967, equation (46 ) )  
while Whitham's (1967a, equation (57 ) )  result is obtained by further letting 
K,  = 0. 



On slowly-varying Xtokes waves 883 

7. Non-Linear features of the modulation equations, permanent 
envelopes 
The presence of the new terms f ; x  and & which give rise to triple derivatives 

and hence, represent dispersion, alters fundamentally the mathematical charac- 
teristics of the system of equations governing the slow modulation. In  particular 
Whitham's original view on their hyperbolicity or ellipticity, and the possibility 
of shocks must now be revised. This change of mathematical property due to a 
weak dispersion term is a familiar one in shallow water theory as in Kortweg- 
deVries (KdV) or Boussinesq equations. Recent numerical work of Zabusky & 
Kruskal(1965) on the KdV equation has shown that the steepening of a wave 
profile due to nonlinearity is counteracted by the dispersion term so that shocks 
do not occur. This is not to say that shocks will not occur in reality; it merely 
indicates that before the formation of shocks, if any, terms of higher deriva- 
tives must become effective which changes any prediction on the position of 
shock by the non-dispersive theory. 

To simplify further analysis, we restrict to the case of two dimensions and 
infinitely deep water (kh - co) which has been shown to be unstable[according to 
a linearized analysis. The modulation equations reduce to two: 

There is a structural resemblance of this set of equations to those of Boussinesq 
for long waves. To make it more evident we introduce d = $g(a2/wo) and rewrite 
(7.1 a, 6 )  for two unknowns d and C,. 

In  Boussinesq equations the dispersion terms of O(e2) are linear, but otherwise 
all other terms are of the same form (see e.g. Whitham 1965a). Thus many fea- 
tures of Boussinesq equations may be anticipated here also. 

We fist look for modulational waves of permanent form f(f;), f ;  = x - c t .  
Equations (7.1 a, b )  become 

(7.3a, b )  I - a2 

WO 
(C,- C) - = constant, 

Now in order that the convective term balance the dispersion terms in (7 .3b) ,  
we should have C, - = O(E) and oat = O(E).  This suggests the following approxi- 

(7.4~4, b, c )  mation: c, = B + SC(1) + . . . , oo = G 4- €W(Q + . . . , 
56-2 
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where c = g l23 .  

Since C, = g/2w,  it follows that 
9 

232 

- cg - c = &l(” = - 8 __ w(1). (7.5) 

Using (7.4) and (7.5) and retaining leading terms only (7.3) may be simplified 
and integrated, which finally gives 

where 

- 
[&$ = - (&) 23+c122+c2c?+c3, 

- ga2 E & = - - = =  
2 G  w 

is the wave ‘action’ and C,, C,, C, are constants. Equation (7.6) is known to give 
cnoidal and solitary waves as solutions. Similar conclusions have been reached by 
Benney & Newel1 (1967). 

The existence of permanent envelopes supports the claim that (7.la,b) are 
similar to Boussinesq equations in that both can support solutions for which non- 
linearity and dispersion are in balance. 

Some facts about transient solutions of Boussinesq and Korteweg-deVries 
equations are pertinent here. Gardner et al. (1967) have discovered analytically 
that, according to the KdV equation, any initial disturbance vanishing at 1x1 + 03 

will eventually disperse into a train of solitary waves of successively smaller 
amplitudes. The prevalence of solitary waves is also seen in numerical studies of 
Zabusky & Kruskal(l965). Recently, based on a variant of Boussinesq equations 
extended to uneven bottom, Madsen & Mei found numerically (i) that a solitary 
wave, distorted by a submerged beach, gradually disintegrates into a train of 
solitary waves on a shelf (Madsen & Mei 1969a), and (ii) that, for a sinusoidal 
disturbance at  one end of a horizontal channel T / ~ = ~  = asinwt, multiple crests 
evolve within any given primary wavelength ,/(gh)2n/w, they advance down- 
stream at different speeds, causing a non-linear beat phenomenon. Larger crests 
eventually outrun the smaller ones, and emerge as cnoidal waves at the front 
(Madsen & Mei 1969b). Most of these features have been observed experimentally 
for shallow water waves (Street et al. 1968; Galvin 1968). Now considering the 
analogy between Boussinesq equations and the modulation equations (7.1 a, b), 
we may speculate that a wave packet, i.e. a pulse-shaped envelope of tl periodic 
wave train, will in general disperse into a series of successively smaller envelope 
pulses; this is indeed one of the features observed experimentally by Feir (1967). 
Secondly, we also believe that the instabilitylof Stokes waves is really a pheno- 
menon of finite amplitude modulation of the envelope, which may be either 
transient (multiple crests) or steady (permanent envelopes) ; this is again con- 
sistent with the experimental records of Feir“(see Benjamin 1967, p. 963). Quanti- 
tative affirmation must await numerical studies of (7.1 a, b)  and further experi- 
ments in long tanks. 

The authors are grateful for the financial sponsorship of the Coastal Engineer- 
ing Research Center, Washington, D.C., U.S. Army Corps of Engineers. This 
Research was performed under Contract DACW 72-68-C-0012. 
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Appendix A. Formal solutions to (2.12) 
As mentioned before, the problem for n = 1 ,  m = 0 is only partially deter- 

$(',l) = cosh Q - (gA(l*l)/wo) {alQ cosh Q + a2Q sinh Q + a3Q2 cosh Q>, ( A  5 )  

The coefficient A(2,1) for the homogeneous solution will be chosen here so as to 
give the proper limit as koh --f co (which can be worked out independently); 
note that this requirement still does not give a unique choice for A@$ l). We take 

$ ( 2 A  = - __ [al(& - q)  + a2(& tanh Q - q tanh q)  + a3(Q2 - q2)] cosh Q ( A  7 )  
gA(L 1) 

"0  

so that [$(231)]2=0 = 0. This leads to 

which lead to the solution 

$(2,2) = - & ~ u ~ u ~ ( & -  1)2cOSh ZQ, 
= Q(kma2)a2(3v2- 1 ) .  

(A 12a, b)  



886 V. H .  Chu and C. C. Mei 

Appendix B 
The explicit formula for & is given for general h(x), and w = a,, = constant. 

We remark that it is this term which requires much more tedious algebra in 
comparison with Whitham's analysis where this contribution is neglected: 

-) - QP3 (2q - coth 2q + sinh -;-- + 2q2) 2q 
1 

- 4P2 (coth 2q - 
sinh 2q 

where 
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